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SUMMARY

\}Unul recently, the one-parameter singular expression for stresses
near a crack-tip was widely thought to be sufficiently scturate over a
reasonable region for any geometry and loading conditions. This view has
been fast changing due to the growing evidence that the inclusin of higher
order terms can significantly affect the solution, particularly :. 3o: certain
biaxial loading conditions. In this contexs, the present paper ¢xamines the
strain energy density criterion for fracture, and the consequences of the
assumption of a 1/r energy singularity in the formulation on its application. It
is found that this assumption imposes a rather severe restriction oa the region
for which the criterion is applicable, and that its application on an arbitrarily
selected ‘small’ distance from the crack-tip (a procedure which has been
adopted by many experimentalists and finite slement analysts), can lead to
erroneous results.
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NOTATION

First three coefficients of the series expansion of the strain energy
density fuaction

Half crack length of specimea

Half width of specimen

Elastic modules

Function of elastic modulus and Poisson's ratio

Half height of specimen

v-i

J-integral

Critical J for determining fracture

Mode-1 and Mode-T Stress intensity factors

Critical stress inteasity factor for Mode-l fracture

Ratio of remote lateral load to remote vertical load

Radial distance from crack-tip

Incremental crack growth

Critical erack growth increment

Radius defiaing core regioa

Strain energy deamsity factor

First three coefficients of the series expansios of the strain energy
density factor

Strain energy deasity factor at load increment j

Critical strain energy density factor for determining fracture

Integration path for the J-integral

Traction vector on »

Displacement vector on »

Displacement in the y-direction at the first corner node behind the crack-tip

Strain energy deasity function

Critical strain energy deasity function

Cartesian coordinate axis system

Complex vector 2 + iy

Leagth parameter /2r/a

Inclination of the crack

Complex function of load, biaxiality and angle of inclination

Distasce of the fret corner node behiad the crack-tip to the erack-tip

Normal and shear strains

Angular coordinate at crack-tip

Function of Poisson's ratio

Poiseca’s ratio

Ratio of the circumference to the diameter of a circle

Normal and sheas stresses

Halomorphic fenctions

R ] o)
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1. INTRODUCTION

The analysis of the stress field around cracks is an elastic solid has beea well documented and
is perhaps much older thaa the field now known as Lincar Elastic Fracture Mechanics. One
of the early works is due to Westergaard (1], who treated the sharp crack problem using an
eigenfunction expansion approsch. Ia s later paper, Westergaard [2] expressed the solutios to
the same problem in terms of complex analytic functions. This. later work has since gained
much recoguition, and is frequently reforenced by the analysts of fracture mechanics. It can be
shown that the Westergaard selution leads to the following classical result for the steves field
nchmd.«umwu-mummw.mmm
mo(uﬂc 1 - ,

o.'-%':m;(n-a;d-’;'). (1.14)

N ¢ 0 .

o.-\ﬁ'; z(l-o-ﬁ’-h’) (0.18)
Ki .0 0 %

Oy = —ﬁ-_:;dni 37 (1.1¢)

where K; is knowa as the stress inteasity factor.

However, a small error made in the Westergaard solution remained undetected for almost
thirty years. By using the more gemeral complex potentials approach of Muskhelishvili (3],
Sih (4] showed that the azbitrary setting of a particular constant in the Westergaard solution
to sero was generally invalid. Discussion oa the effects of the error was sabsequently taken
up by Eftis and Liebowits {5, and later, Eftis et al [6] showed that the ervor was equivalent
to the omission of a noa-singular terin from the stress expressions. By considering an infinite
centre-cracked plate under biaxial remote loads ¢ (perpendicular to the crack) and be (pasaliel
to the crack), it was shown that the solution, correct to the zero-th order term in r, b

K 0 [

o, mcui(l-lh’ ?)—(l-ﬂl (1.2a)
K, 0 .0 .M

o= mms(l'&m’ﬁu’) {3.28)
K; ¢ 0 9

Ogy = ﬁ‘hi i —’— (l!d

Compariag Eqs 1.2 with Eqs 1.1, and setting & = 0 for uainxial loading, it is seen that
the ouly difference is the nou-singuler term ¢ in the expression for ¢,. Of course, as r — 0,
this term is expected to became negligible. However, it does 20t do 50 as rapidly as cue would
like, mainly becawse of the square root effect of the singular torm. For the uniaxial case as an
example, k = 0 and K; = ¢,/%8, 50 that for # = 0°, Eq. 1.3a becomes

weel2-1] s

Par the ervor cansed by negiecting the non-singuiar term to be lesa than 1% say. it is required

that
L3
"; 2 100, (1.4)
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This reprosents an extremely small rogion areund the crack-tip where the nou-siaguler
torms mony be vogarded as bélng ‘higher onder’. Note also thet as & becomes greater (k — o),
the restriction on r/e would become eves move seveve. Eftis o af |8] showed that for the case of
Slascial loading, the omissica of the nen-cinguler term in the prediction of isochrematic fringe
patterns for photosiastic analysss, and the prodiction of crack sagies using the maxissum nermal
stress criterion, lends to significant discrepancies with experimental data. In a subssquent paper,
Eftis o¢ al [7] demonsizated thet the local elastic strain energy density and strain energy rate
alio depend significantly on the biaxiality of the applied load, and the arbitvary omission of
the son-singular term denies the solution to the biaxial effects and therefore leads to incorrect
peedictions of the angle of growth whea using Sih's strain energy density criterion {8].

This work continees the investigation o the effect of the omission of the nos-singular term
in the formuiation of the S-theory, and the consequences and difficulties in its application as 2
vesult. It will be showsn that even the simple uaisial results may be significantly affected, and
the unaware practitioner of the S-theory can be misled.

3. SOLUTION FOR THE INCLINED CRACK PROBLEM

To illusteate the effect of the omission of the nou-singuler term, we will turs to & problem
for which & well knowa solutisn exists. Consider the infiaite plate containing & central crack
of oagth 35 and suljected to biaxial loads # a0d be a8 shows in Fig. 3. Following Muskbe)-
ishvill [8], the belomorphic fanctions which represent the solution are

O0) = #(s) = O 4 T) oy - 3T (21)
0s) = o) = 00+ F) ey + ir. (22)
where
1 .
re tu-nev, (23
1O M) = S (- s Ma e ), 20

and the otsesmes 0,,9y, 05, we gives by

o, +0, = 3¥:) + §:)). (28)
oy - i@,y = {z) + {2 + (s - NF(3). (s8)

After some monipulation, sad resteicting the selntion regien t0 0 < 7/s € 1, K may be
shown that & series expansion of the selution gives
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lr ) 038
+c(l. k)euzﬁ. o - (2.1a)
o= Kﬁ (l+’i| sh”) v’%shzm;cu’;. (2-15) |
c,.-ﬁnh oo dem 3 + ‘/"5'; '(1 ~sinl n.’:) (27)
where K, -dx.mmmmmmw
K,a'—?[(li»b)-(l-h)cmzﬂl. (2.8)
Ky= 'A,E(n ~ k)sin28. (29)
Followiag Hooke's law, the in-plane elastic strains are
= %(0, - Agy),
o= ;(., -2ea), (2.10)
where F=E A=y for plame stress,

F:-E?l_ . ‘\’FL'-V for plase strain,
and E and v are the elastic modulus and Poisson's ratio respectively.
Henee, the strain energy deusity function W for a plane problem is givea by

W= ;(c.c. + 046y +20,,¢4y)

1 (2.11)
=oF [o3 + 03 + 203, + 20(e2, - 0a0,)].
Substituting Eqs 2.7 into Eq. 2.11, we obtaia
A B
W ~'-+7_;+C, (2.12)

where

A= i;,—'{zx,'u + co8){(3 - cosd) - A(1 + cos#))
+ K2[(9 - 4cosd + 3cos20) + A(L + ¢cosd + Scos 20))
+ux,x.-hc|(eao ~ 1)+ Afcos 0 + 1))},
B= c(l k)ecan 38
ﬂ'\ﬁ‘

- K sin i"‘ +cosd + cos 3) + A(cos @ + cos M)},

{A’,m;“!—coui-m”l = M2+ cosl ~ cos M)

= 231 - ) coat
c u_o’(l k)? cos® 24
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Note that the inclusion of the aon-siaguler term in the stress expesssion leads to two
additional teems in W, cne of which has & r=*/% singularity whilst the other is sen-slagular.
To see how this affects the application of the S-theory, it is instructive to summarise the basle
of the theory.

3.1 The Straln Energy Density Criterion

The strala energy density critesion was first proposed by Sih |8, and its application has been
well documented (sce for example [0] - [12]). Ite formulation is based oa the assumption that
the strain encrgy density function ncer the crack-tip possesses & 1/r singularity. This may be
seen from Eq. 3.12 in which for sufliciently small r, W may be written 20

A
W=z, (2.13)

Hence, an r-independent parameter, knows as the sirain energy deasity factor S, may be
defined such that

S=rW=A (2.14)

The criterion concerning crack initiation snd the angle of growth is thea based oa the
following three hypotheses:
Hypothesia 1: Crack extension begias aloag the direction where the strain energy density factor
is a local minimum (denoted by Suia).
Hypothesis 2: Fracture is imminent whea the local minimum Sy s reaches a critical value S,
and that S, is & material parameter which characterises the fracture streagth

of the material.
Hypothesis 3: The amoust of stable incremental growth ry,ry,...,0y,..., 7 Is governed by
W,sgle-s-’—s..=§i=...=§=md. (2.15)

” 4] ‘ r5 Pe

where upoa reaching r,, uastable fracture occurs.

For a centre-cracked specimen under mode I conditions, both the direction of crack prop-
agation sad fracture toughness are well known. Henmce, the substitution of ¢ = 0*, K; =
K1,.Kg = 0 into Eq. 2.14 gives, for plane strain conditions, a convenient expression for relat-
ing S, to existing fracture toughness data, viz.,

L1+ -)
3k

Figure 3 shows a graphical represeatation of Hypothesis 3. It shows that the amoust of
incremental growth can be predicted by the intersection of the plots of W aad the material
constant W,. In an elastic analysis, W is uabounded as r — 0 for any given applied stress # 50
that W will always intersect W,. In practice however, a crack will not grow ualess a sufficient
load is spplied. To account for this phenomenon, a threshold distance r, is defined such that
for r < 7, (referred to as the core region), coatisnum mechanics is assumed to fall short of
reality 50 that any analysis, and hence prediction of growth, must be kept outside the core
region. That is, the condition 7; > 7, must be satisfied. It is also clear that for a material
which exhibits negligible stable growth (i.c., a brittle material), r, = r.. For a 4140 steel with
various yield strengths and fracture toughnesses, Sih [12] showed that 7, ranged from 0.00085
ia. (0.0165 mm) to 0.01345 ia. (0.3416 mm).

S, K}. (2.16)
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S. THE APPLICATION OF THE 8-THEORY IN PREDICTING BRITTLE FAIL-
URE

One advantage of the strain energy deasity criterion over most other fracture criteria is that
both the angle of growth and critical load may be predicted by a single parameter. Furtbermore,
without the restriction of self-similar growth as required by otber criteria such as the critical
energy release rate approach, the S criterion may be applied in complex load systems. For
example, by means of finite elemen: modelling, the S distribution around a crack-tip contained
in a complex structure under an arbitrary load system may, in theory, be used to predict the
failure load as well as the direction of propagation. However, it will be shown in this section
that without sufficient care, this practice can lead to erroneous results.

3.1 Predicting the Onset of Fallure

Consider the uniaxial problem described previously. Since the direction of growth for this case
is known & priori (namely along the x-axis), substituting 6 = 0°, § = 90°, Ky = 0 into Eq. 2.12
and multiplying through by r yields an expression for S along the critical direction, viz.,

S= 517' E;':(I—A)—JK,(I—A)\/?+a’r] . (3.1)

And since K; = o \/7a,
S= ;—;lau - A) = (1= A)2ar +r]
- ‘;LF" [(I—A)-(x-x)ﬁ\/§+ (g)]

The one-term representation, Eq. 2.14, may be obtained by taking the limit of Eq. 3.2 as
r/a — 0, giving

(3.2)

S= ;%(1 -a). (3.3)

Taking a typical value of v = 0.3, Fig. 4 shows a comparison between the one-term rep-
resentation and the higher order expression for S . It may be seen that there is significant
difference between Eq. 3.2 and Eq. 3.3. At the relatively small value of r/a = 0.02, the neglect
of the higher order terms gives rise to errors of approximately 20% in both the plane stress
and plane strain results. Indeed, values of r/a > 0.02 have not been uncommon in many anal-
yses using the strain energy deasity method (e.g., [10}, {13]). What is more important in this
example is that along the critical direction, the one-term expression always over-estimates the
coerect value of S for r/a > 0. Since S; is derived from the one-term expression (Eq. 2.16),
the prediction of fracture load using the S-theory by means of finite element modelling, or by
physically monitoring the elastic straius at some small but Snite distance from the crack tip,
will invariably produce an over-estimate. In the above example, if the strain-energy density S
at rfa = 0.02 is monitored, and Hypothesis 2 of the criterion is applied so that fracture load
is assumed to be reached when S = S, then S(rfa — 0) would be greater than S, by about
20% and hence the fracture strength would be over-estimated by 9.5%. The non-conservative
nature and the relatively large magnitude of the error involved is certainly undesirable, and it
shows how the blind application of the S-theory in design work can be extremely dangerous.

For the S-theory to be applicable, the analysis must be confined to a region for which the
one-term expression, Eq. 3.3, is valid. Allowing an error of say 5 %, we get from Eq. 3.2

5
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(1-2)vZrfa-r/a
T=N-u-nyaferral < 0% 4

The solution which satisfies the condition 0 < r/s < 1 is given by

E <0.00124. (3.5)

Equation 3.5 represents an upper limit to the region where the strain energy density analysis
may be applied with acceptable accuracy. However, we recall that there exists also a Jower limit
r, which defines the core region (see §2.1). Consequently, the region where the S-theory is valid
may be given by

to < r < 0.001244. (3.6)
Equation 3.6 implies
To
> —. X
2 0.00124 37

The restrictions inferred by Eqs 3.5 and 3.7 are severe, and in some cases, may be considered
as impractical. For the high fracture strength 4140 steel (r, = 0.01345 in.) quoted in [12} as an
example, the minimum crack length required for a valid LEFM analysis would be 10.85 in. (275.6
mm). Such a condition would be difficult to satisfy, particularly for real life situations where
cracks of much shorter lengths are detected and require analysis. Equation 3.5 on the other
hand can almost always be satisfied in a finite element model in which mesh sizes of the order
of 0.001 a may be readily handled on a modern computer. However, using such a fine mesh
for a linear analysis may be difficult to justify as stress intensity factors have been successfully
computed by other methods with much coarser grids. To highlight this point, a finite element
model of a centre-cracked plate (v = 0.3) subjected to uniaxial tensile loading and plane strain
conditions was established. Because of symmetry, only one guarter of the plate which has a
width to height ratio b/hk = 1, and a crack-length to width ratio a/d = 0.25 was modelled.
Figure 5 shows the two mesh schemes adopted for the analysis. The parameters calculated
include

1) The stress intensity factor K, given by the expression {14]

=uf [
K; = 2 2, (3.8)

where v; and A, are respectively the y-displacement and distance from the crack tip at
the first corner node behind the crack tip, and F is as defined in Eq. 2.10.
2) The J-integral given by the numerical integration of the expression (15]

Ou
J—/Wdy—‘l"xda, (3.9)

where T and u are the traction force and displacement vectors along the path s respectively.
The integration path chosen in this case is shown in Fig. 5. It may be shown that J is
path-independent for an elastic material and is related to the stress intensity factor by the
following expression

Ky = VJF. {3.10)

]

I\
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3) The strain energy density factor S(= rW) at modal points along the critical direction
(0 = 0°), where W is calculated from the computed stresses (Eq. 2.11). To estimate the
stress intensity factor from the strain eaergy demsity factor, the convestional expression
which neglects the higher order terms is used [12}

, 22ES
K’ = m. (3.11)

In the following presentation, all values of K; and S have been normalised by ¢,/a and
0%a/E respectively. The computed strain energy density along the critical direction (¢ = 0°)
for Mesh-1 is shown in Fig. 6. An immediate observation is the systematic scatter of the results
about some mean value. The strain energy density factor appears to be over-estimated at the
corner podes, and under-estimated at mid-side nodes. Whilst the average deviation of S from
the mean amounts to approximately 5.7 %, the scatter of the computed stresses would be only
approximately 2.8 % and is therefore considered acceptable. If the assumption of a constant S is
made aver the region say 0 < r/a < 0.04, then a best it to the data gives the resalt S = 0.2597,
which when used in Eq. 3.11, gives K; = 1.771. This compares with K; = 1.950 obtained using
the analytical solution given in Rooke and Cartwright (16, and therefore represents a 9.2 %
under-estimation.

The computational results for the refined mesh are shown in Fig. 7. Again, a similar
systematic scatter is apparent, and the assumption of a constant S in the range 0 < r/a < 0.04
gives S = 0.2827, or from Eq. 3.11, K; = 1.848 which is in error by 5.2 %. However, the
downward trend of the S-distribution as predicted by the analytical solution is clearly evident
in this case, and compares well with the plot of Eq. 3.1 (where K is taken to be 1.950). This
suggests that some sort of curve fitting to the correct form

s=s,+s.\/af+s, (5) (3.12)

would provide a more accurate prediction of strain energy singularity. This was indeed found
to be the case. Applying a least squares fit for the S data of Mesh-2 to Eq. 3.12, it was found
that S, = 0.3082. Substituting S, for S in Eq. 3.11 yields K; = 1.930, giving an error of only
1%.

Table 1 summarises the various methods of computing the stress intensity factor and their
errors with respect to the analytical solution obtained in [16].

K Ki(v1,4,) Ki(J) K((S = conat.) [K;(S,)
Ret. [16]

Mesh-1 { Mesh-2 | Mesh-1 | Mesh-2 | Mesh-1 | Mesh-2 Mesh-2

1.950 1.892 | 1.902 1.804 1.806 1111 1.848 1.930

% Error | 3.0 25 29 28 9.2 5.2 1.0

Table 1. Stress Intensity Factors Calculated by Various Methods

7




It may be seen from Table 1 that the stress intensity factor is predicted accurately by
both the crack opening and the J-integral even for Mesh-1. The evaluation of K; from S
however required the much finer mesh to achieve an accuracy to within 5 %. For a more
accurate prediction, a least squares fit of the correct form was required. Whilst this curve
fitting technique proved to be useful in the case of Mesh-2, it would be unreasonable to apply
this to the data of Mesh-1 where a poor correlation to the true solution is expected.

It is also interesting to point out that whilst the J-integral involves the integration of a
strain energy term, the problems associated with the S-theory do not appear, as it has been
shown by Eftis et al [1] that the truncation of the higher order terms has no effect on J and
Eq. 3.10. Another feature of J is that the integration process tends to nullify the systematic
scatter of the numerical data and was therefore able to predict K; accurately without the
application of any best fit technique. In practice, it is most likely that J is used in a non-
linear analysis where stress intensity factors are not defined. Hence, J is not generally used for
computing Ky, but instead, it is calculated and compared directly to a critical value J, (which,
like K, and S, is a material parameter) to determine whether failure is to occur. The above
results merely show that a finite elements approach to the J-integral can be applied with some
confidence. However, it must be remembered that the restriction of self-similar growth must be
observed, and that its usefulness when extended to true elasto-plastic materials is yet uncertain

[17].

8.2 Predicting the Direction of Growth

Having seen how the neglected higher order term can affect the prediction of crack initiation by
the S-theory, its effect on the prediction of the direction of crack extension is now examined. In
testing the maximum normal tensile stress theory for predicting the direction of crack extension,
Williams and Ewing [18] conducted experiments on PMMA (polymethylmethacrylate) sheet
specimens which contain a central inclined slit crack and subjected to uniaxial tensile loads.
It was found, particularly for steep crack angles (4 — 0°), that the angle of growth deviated
from the predicted results presented by Erdogan and Sih [19]. The authors attributed the
discrepancies to the fact that only a one-term expansion was used in the expression for the
stresses, and showed that by selecting a critical parameter a = /2r/a = 0.1(r/a = 0.005), and
including higher order terms in the expansion, a better fit of experimental data with theory is
achieved. In a subsequent discussion, Erdogan and Sih [20] showed that, unlike the maximum
normal tensile stress criterion, the strain energy density criterion provides a better fit to the
experimental data and is relatively insensitive to the parameter a. To investigate this point
further, Eq. 2.12 is differentiated with respect to 8 to form

as dA 0B
=2t asV"
3*'s d4%A o°B
20 = o T o V"

(3.13)

and from Hypothesis 1 of the criterion, the direction of crack propagation is determined when

s

=0, and 20

>0. (3.14)

g3

Assuming v = 0.33 and for plane strain conditions, the solutions to Eq. 3.14 over the range
0* < A < 90° for a = 0,0.1 and 0.2 are presented in Fig. 8 together with the scatter band of the
results in [18]. It may be seen that the one-term representation of the S-theory (equivalent to
the case a = 0) fitted the experimental data better than the one-term approach to the maximum
stress criterion. It is also noted that the solutions for both a = 0.1 and 0.2 fall within or near the
experimental scatter band. However, there is some evidence that the use of & = 0 for § < 45°
and a = 0.2 for # > 45° can result in a more accurate prediction. This has the implication that
the core radius r, may in fact not be a material property. The question of whether r, may be

8
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- considered as a material constant has previously been addressed by Chaag {21). Chaag found

that in order to obtain reasonable agreement between the experimental data of {18}, [22], {23]
and the strain energy density theory, various values of r,/a (ranging from 0.005 to 0.15) had to
be used despite the fact that all data were presented for the ssme material (PMMA) and for
similarly sized cracks. He therefore concluded that r,/a (and hence r,) ‘can hardly be justified
as 8 material parameter in the S-theory'.

Chang [21] also discussed, at length, the dilemmas which may arise in applying the S-
theory when no relative minimum, or alternately, when more tban one relative minimum in S
exist in the solution. Swedlow [24] showed that for uniaxial loading configurations, the choice
of the global minimum leads to incorrect predictions. Swedlow then proposed the additional
requirement that the Syin which governs fracture must be associated with a tensile hoop stress.
On the other band, Sih and Madenci [10] assert that it is the maximum of all Spmis's which
first reaches the material threshold and is therefore the critical factor. For the inclined crack
problem considered, two local minima are found for all § except for § = 90°, and indeed, it is
the maximum of the two at any given r which corresponds to the results presented in Fig. 8.
However, an interesting situation can arise when other loading conditions are considered. As an
example, under a biaxial tension-compression loading system with k = ~1, and for § = 60°, the
paths of the two minima are as shown in Fig. 9. The corresponding plots of S along the paths
denoted by i and ii are presented in Fig. 10. It is clear from the plots that the determination
of the maximum of the minima would depend on the selection of r/fa.

It bas been seen in the uniaxial case that although the use of the S-theory to predict
crack initiation requires an extremely small value of r/a, the restriction was much less severe
for predicting the propagation angle as reasonable predictions may be achieved for the rauge
0 < r/a < 0.02. However, the above example shows that this may not be valid in general as the
choice of r/a appears to be crucial in determining whether the crack is to grow in direction i or
ii. Perhaps this is also evidence for the possibility that the S-theory alone may be insufficient
in determining the direction of crack propagation in general, and a modification such as that
proposed by Swedlow [24] may be in order.

4. CONCLUSION

It has been shown that the usual assumption of a 1/r energy singularity is valid only within
an extremely small regime around the crack tip. For the centre-cracked plate considered, this
region is typically of the order of rfa < 1073. As a consequence, the application of the
S-theory at some distance outside this region may result in substantial errors in the prediction
of crack initiation. For a finite element analysis, an extrapolation technique using the more
accurate form is proposed and found to be useful. However, this techaique still requires a
relatively Ane computational grid, and a guideline for maximum mesh size, optimum number of
data points and the valid extrapolation domain for arbitrary crack and loading configurations
has yet to be established.

It bas also been shown that the restriction on r/a is somewhat less severe for predicting
the crack growth direction, and that for the uniaxial load case, reasonable agreement between
experimental data and predicted results may be achieved over a relatively large range of r/a.
Unfortunately, this may not be taken as a general rule as illustrated by the biaxial load example
where a dilemma in choosing the correct Sy, may arise when r/a is arbitrarily selected.

In closure, it should be emphasised that, despite the problems revealed by the current
work, the strain energy density factor should not be disregarded as a useful parameter. There
is no doubt that the S-theory works well under certain conditions, and its potential in handling
mixed mode fractures is particularly valuable. The close relationship between S and the stress
intensity factors (Eq. 2.12), and the reasonable agreement between predicted and existing
experimental data on propagation angles, teud to support this. On the other hand, limitations
to the theory must be identifled and realised. Questions such as whether or not r, is a valid

]
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material parameter, or what should be done whea multiple minima in S exist, have, in the
preseat anthor's opimion, yet to be positively resolved.
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Figure 1. Uniaxially Loaded Flat-Crack Geometry
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Figure 2. Biaxially Loaded Inclined-Crack Geometry
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Figure 3. Strain Energy Density Distribution Aloag the Critieal Direction
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Figure 5. Finite Element Model of a Centre-Cracked Panel
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